Abstract

The application of soil infiltration systems (SISs) in rural domestic sewage (RDS) is limited due to suboptimal denitrification resulting from factors such as low C/N (<5). This study introduced filler-enhanced SISs and investigated parameter impacts on pollutant removal efficiency and greenhouse gas (GHG) emission reduction. The results showed that Mn sand-pyrite SISs, with hydraulic load ratios of 0.003 m3/m2·h and dry-wet ratios of 3:1, achieved excellent removal efficiency of COD (92.7 %), NH4+-N (95.8 %), and TN (76.4 %). Moreover, N2O and CH4 emission flux were 0.046 and 0.019 mg/m2·d, respectively. X-ray photoelectron spectroscopy showed that the relative concentrations of Mn(Ⅱ) in Mn sand and Fe(Ⅲ) and SO42- in pyrite increased after the experiment. High-throughput sequencing indicated that denitrification was mainly performed by Thiobacillus. This study demonstrated that RDS treatment using the enhanced SIS resulted in efficient denitrification and GHG reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call