Abstract
AbstractIn this paper, we consider a class of dynamic vehicle routing problems, in which a number of mobile agents in the plane must visit target points generated over time by a stochastic process. It is desired to design motion coordination strategies in order to minimize the expected time between the appearance of a target point and the time it is visited by one of the agents. We propose control strategies that, while making minimal or no assumptions on communications between agents, provide the same level of steady‐state performance achieved by the best‐known decentralized strategies. In other words, we demonstrate that inter‐agent communication does not improve the efficiency of such systems, but merely affects the rate of convergence to the steady state. Furthermore, the proposed strategies do not rely on the knowledge of the details of the underlying stochastic process. Copyright © 2007 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.