Abstract
This paper focuses on the problem of rostering in intermittently connected passive RFID networks. It aims to report a list of tagged mobile nodes that appear in given interested area(s) and time interval(s). Such rostering faces several unique challenges. First, the network consists of two dramatically different types of nodes: powerful static readers and extremely resource-constrained mobile tags. Communication can be established from a reader to a tag only, but not tags to tags or readers to readers. Therefore, the connectivity is very low and intermittent. Besides connectivity, the tag's computation power is also intermittent. It is available only for a short interval when the tag is powered up by a nearby reader, rendering any continuous functions impossible. Moreover, the capacity of tags is so limited that it becomes the critical network resource and communication bottleneck. To address the above challenges, we propose a rostering algorithm that employs a dynamic space-efficient coding scheme to construct hypothetic packet candidates, appraises their values according to information redundancy and tag mobility, and establishes a 0-1 Knapsack model to choose the best set of packets, which together maximize their total (redundancy-excluded) value, but do not exceed the capacity of a tag. We carry out experiments that involve 38 volunteers for nine days and perform large-scale simulations to evaluate the proposed rostering scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.