Abstract

Large- and finite-sample efficiency and resistance to outliers are the key goals of robust statistics. Although often not simultaneously attainable, we develop and study a linear regression estimator that comes close. Efficiency is obtained from the estimator's close connection to generalized empirical likelihood, and its favorable robustness properties are obtained by constraining the associated sum of (weighted) squared residuals. We prove maximum attainable finite-sample replacement breakdown point and full asymptotic efficiency for normal errors. Simulation evidence shows that compared to existing robust regression estimators, the new estimator has relatively high efficiency for small sample sizes and comparable outlier resistance. The estimator is further illustrated and compared to existing methods via application to a real dataset with purported outliers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.