Abstract

In this paper we present a systematic and efficient approach to deal with uncertainty in Nonlinear Model Predictive Control (NMPC). The main idea of the approach is to represent the NMPC setting as a real-time decision problem under uncertainty that is formulated as a multi-stage stochastic problem with recourse, based on a description of the uncertainty by a scenario tree. This formulation explicitly takes into account the fact that new information will be available in the future and thus reduces the conservativeness compared to open-loop worst-case approaches. We show that the proposed multistage NMPC formulation can deal with significant plant-model mismatch as it is usually encountered in the process industry and still satisfies tight constraints for the different values of the uncertain parameters, in contrast to standard NMPC. The use of an economic cost function leads to a superior performance compared to the standard tracking formulation. The potential of the approach is demonstrated for an industrial case study provided by BASF SE in the context of the European Project EMBOCON. The numerical solution of the resulting large optimization problems is implemented using the optimization framework CasADi.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.