Abstract
We consider the problem of estimating the probability of a large loss from a financial portfolio, where the future loss is expressed as a conditional expectation. Since the conditional expectation is intractable in most cases, one may resort to nested simulation. To reduce the complexity of nested simulation, we present an improved multilevel Monte Carlo (MLMC) method by using quasi-Monte Carlo (QMC) to estimate the portfolio loss in each financial scenario generated via Monte Carlo. We prove that using QMC can accelerate the convergence rates in both the crude nested simulation and the multilevel nested simulation. Under certain conditions, the complexity of the proposed MLMC method can be reduced to O(ϵ−2(logϵ)2). On the other hand, we find that using QMC in MLMC encounters a high-kurtosis phenomenon due to the existence of indicator functions. To remedy this, we propose a smoothed method which uses logistic sigmoid functions to approximate indicator functions. Numerical results show that the optimal MLMC complexity O(ϵ−2) is almost attained even in moderate high dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.