Abstract
Due to the proliferation of location-based services and IoT devices, a lot of spatial points are being generated. Spatial data analysis is well known to be an important task. As spatial data analysis tools, graphs consisting of spatial points, where each point has edges to its nearby points and the weight of each edge is the distance between the corresponding points, have been receiving much attention. We focus on triangles (one of the simplest sub-graph patterns) in such graphs and address the problem of retrieving the top-k weighted spatial triangles. This problem has important real-life applications, e.g., group search, urban planning, and co-location pattern mining. However, this problem is computationally challenging, because the number of triangles in a graph is generally huge and enumerating all of them is not feasible. To solve this challenge, we propose an efficient algorithm that returns the exact result. Our experimental results on real datasets show the efficiency of our algorithm.KeywordsSpatial pointsWeighted graphTop-k retrieval
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.