Abstract

Top-k recommendation seeks to deliver a personalized list of k items to each individual user. An established methodology in the literature based on matrix factorization (MF), which usually represents users and items as vectors in low-dimensional space, is an effective approach to recommender systems, thanks to its superior performance in terms of recommendation quality and scalability. A typical matrix factorization recommender system has two main phases: preference elicitation and recommendation retrieval. The former analyzes user-generated data to learn user preferences and item characteristics in the form of latent feature vectors, whereas the latter ranks the candidate items based on the learnt vectors and returns the top-k items from the ranked list. For preference elicitation, there have been numerous works to build accurate MF-based recommendation algorithms that can learn from large datasets. However, for the recommendation retrieval phase, naively scanning a large number of items to identify the few most relevant ones may inhibit truly real-time applications. In this work, we survey recent advances and state-of-the-art approaches in the literature that enable fast and accurate retrieval for MF-based personalized recommendations. Also, we include analytical discussions of approaches along different dimensions to provide the readers with a more comprehensive understanding of the surveyed works.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.