Abstract

We describe a practical and efficient approach to represent physically realistic long-range interactions in two-dimensional tensor network algorithms via projected entangled-pair operators (PEPOs). We express the long-range interaction as a linear combination of correlation functions of an auxiliary system with only nearest-neighbor interactions. To obtain a smooth and radially isotropic interaction across all length scales, we map the physical lattice to an auxiliary lattice of expanded size. Our construction yields a long-range PEPO as a sum of ancillary PEPOs, each of small, constant bond dimension. This representation enables efficient numerical simulations with long-range interactions using projected entangled pair states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.