Abstract

This paper describes the linear parametric geometric uncertainty model (LPGUM) for modeling part shape and position uncertainties. It describes the worst-case first-order approximations of the uncertainty zones of basic geometric entities. It is general and expressive, allows for parameter dependencies typical of tolerance specifications, and can be uniformly used to study a wide variety of basic geometric problems in tolerancing and metrology. We first present the LPGUM of a point and a line, and then describe the properties of their uncertainty zones and that of a mesh triangle in the plane and in space. We show that their geometric complexity is low-polynomial in the number of dependent parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.