Abstract

Retroviruses encapsidate two copies of full-length viral RNA molecules linked together as a dimeric genome. RNA stem loop structures harboring palindromic (or “kissing”) loop sequences constitute important cis-elements for viral dimerization known as dimer initiation sites (DIS). In murine leukemia virus (MLV), a 10-mer and a 16-mer palindrome (DIS-1 and DIS-2, respectively) located in the viral leader region mediate dimerization in vitro and affect dimer stability of vector RNA in vivo. We have investigated the effect on viral replication of introducing deletions or nucleotide substitutions within these palindromes in a full-length MLV genome. Our results demonstrate that viruses modified at the dimer initiation site regions are viable and show wild-type levels of RNA encapsidation. One mutant lacking the DIS-1 palindrome was severely impaired and displayed an increased cellular ratio of spliced versus genomic RNA that most likely contributes to the inefficient replication. The implications for development of DIS-modified retrovirus-based vectors are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.