Abstract

A new scheduling and cost optimization model for high-rise construction is presented in this paper. The model has been formulated with a unique representation of the activities that form the building's structural core, which need to be dealt with carefully to avoid scheduling errors. In addition, the model has been formulated incorporating: 1 the logical relationships within each floor and among floors of varying sizes; 2 work continuity and crew synchronization; 3 optional estimates and seasonal productivity factors; 4 prespecified deadline, work interruptions, and resource constraints; and 5 a genetic algorithms-based cost optimization that determines the combination of construction methods, number of crews, and work interruptions that meet schedule constraints. A computer prototype was then developed to demonstrate the model's usefulness on a case study high-rise project. The model is useful to both researchers and practitioners as it better suits the environment of high-rise construction, avoids scheduling errors, optimizes cost, and provides a legible presentation of resource assignments and progress data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.