Abstract

Obtaining an efficient bound for the triangle removal lemma is one of the most outstanding open problems of extremal combinatorics. Perhaps the main bottleneck for achieving this goal is that triangle-free graphs can be highly unstructured. For example, triangle-free graphs might have only regular partitions (in the sense of Szemeredi) of tower-type size. And indeed, essentially all the graph properties $$\mathcal{P}$$ for which removal lemmas with reasonable bounds were obtained, are such that every graph satisfying $$\mathcal{P}$$ has a small regular partition. So in some sense, a barrier for obtaining an efficient removal lemma for property $$\mathcal{P}$$ was not having an efficient regularity lemma for graphs satisfying $$\mathcal{P}$$ . In this paper we consider the property of being induced C4-free, which also suffers from the fact that a graph might satisfy this property but still have only regular partitions of tower-type size. By developing a new approach for this problem we manage to overcome this barrier and thus obtain a merely exponential bound for the induced C4 removal lemma. We thus obtain the first efficient removal lemma that does not rely on an efficient version of the regularity lemma. This is the first substantial progress on a problem raised by Alon in 2001, and more recently by Alon, Conlon and Fox.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.