Abstract

The fabrication of multicomponent composite systems may provide benefits in terms of charge separation and the retardation of charge pair recombination. In this work, a ternary heterostructured Ag-Bi2MoO6/BiPO4 composite was fabricated through a low-temperature solution-phase route for the first time. The XRD, SEM, EDX and XPS results indicated the prepared sample is a three-phase composite of BiPO4, Bi2MoO6, and Ag. Ag nanoparticles were photodeposited on the surface of Bi2MoO6/BiPO4 nanosheets, which not only increase visible-light absorption via the surface plasmon resonance, but also serve as good electron acceptor for facilitating quick photoexcited electron transfer. The interface between Bi2MoO6 and BiPO4 facilitates the migration of photoinduced electrons from Bi2MoO6 to BiPO4, which is also conductive to reduce the recombination of electron-holes. Thus, the ternary heterostructured Ag-Bi2MoO6/BiPO4 composite showed significant photocatalytic activity, higher than pure Bi2MoO6, BiPO4, and Bi2MoO6/BiPO4. Moreover, the possible photocatalytic mechanism of the Ag-Bi2MoO6/BiPO4 heterostructure related to the band positions of the semiconductors was also discussed. In addition, the quenching effects of different scavengers revealed that the reactive ·OH and O2·− play a major role in the phenol red decolorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.