Abstract

It is important to investigate whether combining two modification strategies has a synergistic effect on the activity of photocatalysts. In this manuscript, Fe-doped BiOBr/Bi2WO6 heterojunctions were synthesized by a one-pot solvothermal method, and excellent photocatalytic performance was obtained for the degradation of tetracycline hydrochloride (TCH) in water without the addition of surfactant. Combining experiments and characterization, the synergistic effect between Fe ion doping and the BiOBr/Bi2WO6 heterojunction was elucidated. The Fe/BiOBr/Bi2WO6 composite photocatalyst had a beneficial void structure, enhanced visible light response, and could inhibit the recombination of photogenerated support well, which improved the photocatalytic activity. The presented experiments demonstrate that Fe/BiOBr/Bi2WO6 removes 97% of TCH from aqueous solution, while pure BiOBr and Bi2WO6 only remove 56% and 65% of TCH, respectively. Finally, the separation and transfer mechanisms of photoexcited carriers were determined in conjunction with the experimental results. This study provides a new direction for the design of efficient photocatalysts through the use of a dual co-modification strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call