Abstract

Leachate concentrates, an effluent produced from nanofiltration and/or reverse osmosis, contains a high amount of salts and dissolved organics especially refractory organics. Thus, the treatment of leachate concentrates would consume high energy or a large amount of chemicals. The present study is to develop an effective treatment method by using coupled electrochemical methods with the least possible energy consumption. The leachate concentrates was pretreated by electrocoagulation (EC), with aluminum or iron electrodes as anodes, to decrease the dissolved organic content. EC with Al electrode was found to be more efficient by consuming 1.25 kWh/m3 energy to remove 70% of total organic carbon (TOC). EC effluent was further subjected to a novel simultaneous electro-oxidation and in-situ peroxone process, which used a Ti-based nickel and antimony doped tin dioxide (NATO) as anode and a carbon nanotube coated carbon-polytetrafluoroethylene (CNT-C/PTFE) as cathode for oxygen reduction reaction (ORR). Compared with a traditional EO with cathode for hydrogen evolution reaction (HER-EO), ORR-EO obtained higher efficiency and an energy consumption of 26.25 kWh/m3, which was much lower than 35.5 kWh/m3 for HER-EO. Results showed that after ORR-EO, a final TOC of 57.3 mg/L was obtained. Thus, EC in tandem with ORR-EO process has an excellent capability and economic merit in the field of treating leachate concentrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.