Abstract

BiFeO(3) magnetic nanoparticles (BFO MNPs) were prepared with a sol-gel method and characterized as a catalyst. It was found that BFO MNPs effectively catalyzed the decomposition of H(2)O(2) into *OH radicals, being confirmed with electron spin resonance spin-trapping technique and other radical probing techniques. The strong H(2)O(2)-activating ability of BFO MNPs showed promising applications in the oxidative degradation of organic pollutants. When BFO MNPs were used as a heterogeneous Fenton-like catalyst to degrade Rhodamine B, the apparent rate constant for the RhB degradation at 25 degrees C at pH 5.0 in the BFO MNPs-H(2)O(2) system was evaluated to be 2.89 x 10(-2) min(-1), being about 20 folds of that obtained with Fe(3)O(4) MNPs as the catalyst under similar conditions. Moreover, BFO MNPs were demonstrated to have excellent stability and reusability. The catalytic mechanism of BFO MNPs was also investigated with Monte Carlo simulations and density functional theory calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.