Abstract

Prussian Blue nanoparticles (PBNP) synthetized and adsorbed onto γ-Al2O3 spheres were prepared and characterized by transition and scanning electron microscopy (TEM, SEM), energy dispersive X-ray spectroscopy (EDS) and sorptometry. Adsorption and reaction runs were performed using aqueous solutions of a model azo dye Orange G. The adsorption capacity of the PBNP/γ-Al2O3 at 323 and 343K at initial pH 3 and 6 was studied. The presence of PBNP increased the adsorption capacity of the support and this effect was more pronounced at initial pH 6. However, since the adsorbent life time was narrow and its regeneration quite difficult, PBNP/γ-Al2O3 was tested as a heterogeneous Fenton-like catalyst. The catalytic activity and stability for oxidation of Orange G were investigated in terms of discolouration, TOC and oxidant conversion.At the best operating condition studied (343K and pH0=3), complete dye discolouration and 60% of mineralization were attained while reaction largely overcomes adsorption. At this temperature the catalyst activity and its characteristics remained almost invariable during 9 cycles of 5h each and iron leaching occurred in low extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.