Abstract

Microplastic particles have been discovered in virtually all ecosystems worldwide, yet they may only represent the surface of a much larger issue. Nanoplastics, with dimensions well below 1 µm, pose an even greater environmental concern. Due to their size, they can infiltrate and disrupt individual cells within organisms, potentially exacerbating ecological impacts. Moreover, their minute dimensions present several hurdles for removal, setting them apart from microplastics. Here, we describe a process to remove colloidally stable nanoplastics from wastewater, which synergistically combines electrophoretic deposition and the formation of particle-stabilized foam. This approach capitalizes on localized changes in particle hydrophilicity induced by pH fluctuations resulting from water electrolysis at the electrode surface. By leveraging these pH shifts to enhance particle attachment to nascent bubbles proximal to the electrode, separation of colloidal particles from aqueous dispersions is achieved. Using poly(methyl methacrylate) (PMMA) colloidal particles as a model, we gain insights into the separation mechanisms, which are subsequently applied to alternative model systems with varying surface properties and materials, as well as to real-world industrial wastewaters from dispersion paints and PMMA fabrication processes. Our investigations demonstrate removal efficiencies surpassing 90%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.