Abstract
Due to the frequent detection and potential toxicity of moxifloxacin (MOX), its removal technology had attracted attention in recent years. In this research, CuFeS2/MXene was prepared and used to activate peroxymonosulfate (PMS) to remove MOX. The degradation efficiencies, kinetics, influences, and reaction mechanism of MOX by CuFeS2/MXene/PMS were investigated. The synergistic effect of CuFeS2 and MXene significantly enhanced PMS activation, producing SO4•-, HO•, and 1O2 as the main active species. By adding 0.12g/L CuFeS2/MXene and 0.12mM PMS, MOX removal efficiency reached 99.1% within 40min, with a rate constant of 0.1073min-1. The composite ratios of CuFeS2/MXene impacted PMS activation more significantly than catalyst dosages and PMS concentrations. Acidic conditions were favorable for the degradation of MOX, while HCO3-, HPO42-, Mn2+, and HA had the inhibitory effects. Twelve major products were detected by HPLC-MS, and DFT was used to illustrate possible degradation pathways of MOX, including the removal of nitrogen-containing heterocycle and transformations of quinolone moieties. Toxicity analysis showed that the developmental toxicity, mutagenicity, and acute toxicity of degradation products tended to decrease. CuFeS2/MXene could exhibit excellent reusability, maintaining an average MOX degradation efficiency of 90.8% in the 7-cycle experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.