Abstract
The sheet-like adsorbent of the eggshell wastes was prepared by the thermal hydrolysis method. The structure of the adsorbent was characterized by scanning electron microscope, Brunauer-Emmett-Teller, X-ray diffraction, transmission electron microscope, and X-ray photoelectron spectrometer. The adsorption capacity was investigated in a Pb2+ solution. The effects of initial pH, salt concentration, contact time, and adsorbate concentration on the adsorption of lead ions were investigated in detail. The morphology of the adsorbent was sheet-like microspheres. Zinc selenide/zinc oxide could be uniformly loaded onto the eggshell waste surface, which could effectively enhance the specific surface area of the eggshell wastes. The adsorption kinetics and isotherm followed the pseudo-second-order and Langmuir-Freundlich isotherm model, respectively. The synthesized adsorbent showed a maximum lead adsorption capacity of 1,428.78 mg/g at room temperature. Ion-exchange was the main adsorption mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.