Abstract

A novel metal-biochar (Biochar/AMDS) composite were fabricated by co-pyrolysis of spent coffee waste (SCW)/acid mine drainage sludge (AMDS), and their effective application in adsorptive removal of air pollutants such as formaldehyde in indoor environments was evaluated. The physicochemical characteristics of Biochar/AMDS were analyzed using SEM/EDS, XRF, XRD, BET, and FTIR. The characterization results illustrated that Biochar/AMDS had the highly porous structure, carbonaceous layers, and heterogeneous Fe phases (hematite, metallic Fe, and magnetite). The fixed-bed column test showed that the removal of formaldehyde by Biochar/AMDS was 18.4-fold higher than that by metal-free biochar (i.e., SCW-derived biochar). Changing the ratio of AMDS from 1:6 to 1:1 significantly increased the adsorption capacity for formaldehyde from 1008 to 1811 mg/g. In addition, thermal treatment of used adsorbent at 100 °C effectively restored the adsorptive function exhausted during the column test. These results provide new insights into the fabrication of practical, low-cost and ecofriendly sorbent for formaldehyde.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.