Abstract

AbstractBiochar (BC) and hydroxyapatite (HAp) are widely used in environmental remediation due to their high adsorption capacity, porous structure, large specific surface area, chemical stability, non‐toxicity, and low solubility. Combining BC and HAp is a green and effective strategy for creating new adsorbents (BCH) that have a synergistic impact on wastewater treatment. In this study, BCH composites derived from apatite ore and macadamia nut shells were synthesized by the wet impregnation method to remove oxytetracycline (OTC) from aqueous solutions. The BC‐HAp composite with a ratio of 10:1 (by weight) was the most effective material for removing OTC. The Redlich–Peterson model achieved the highest correlation coefficient among the four models tested (Freundlich, Langmuir, Temkin, and Redlich–Peterson). The maximum adsorption capacity calculated with the Langmuir isotherm was 49.59 mg g−1. It was found that the adsorption process was significantly affected by the solution pH. The bipolar form of the drug was found to be OTC±, and the adsorption was most effective in solutions with a pH of 6. The OTC adsorption dominant mechanisms on nanocomposites could be electrostatic attraction, hydrogen bonding formation, surface complexation, or ion exchange. Therefore, the BCH composite showed great potential for removing OTC pollutants in a cost‐effective, and environmentally friendly manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.