Abstract

A novel mesoporous, nanocomposite, magnetically separable adsorbent, namely activated alumina (γ-Al2O3)/ferrite (Ni0.5Zn0.5Fe2O4) microfibers have been successfully prepared by the sol–gel process. These nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers are formed after calcination of the precursor at 450 °C for 3 h, and characterized with high aspect ratios and uniform diameters of 1–10 μm. In the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers, the spherical γ-Al2O3 particles are homogeneously embedded on the microfiber. Their specific surface areas and magnetic properties are significantly influenced by the γ-Al2O3 content and calcination conditions. With the designed γ-Al2O3 mass fraction of 0.2 and the calcination temperature of 550 °C, the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers possess a high specific surface area of 118.3 m2/g and saturation magnetization (M s) of 20.4 Am2 kg−1, respectively. The adsorption behaviors of the nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers were examined using the Congo red and methyl blue dyes as the adsorbate. The adsorption kinetics, effects of the adsorbent dosage and solution pH, adsorption isotherms, and regeneration of the microfiber adsorbents were investigated. The pseudo-second-order model can be used to describe the adsorption kinetics. The resultant isotherm data are well fitted by the Temkin model, implying that the dyes adsorption on the γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers is a multilayer adsorption combined with some degrees of chemical interactions. Considering the simple synthesis process, high adsorption and unique magnetic property, these mesoporous, magnetic, nanocomposite γ-Al2O3/Ni0.5Zn0.5Fe2O4 microfibers can be used as a highly efficient, fast, and convenient adsorbent for dyes removal. Highlights

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.