Abstract
The batch removal of Cr(VI) from simulated wastewater with Fe@Fe2O3 core-shell nanowires (FCSNs) was investigated in this study. Itwas found that each gram of the FCSNs could remove 7.78 mg of Cr(VI) from simulated wastewater containing 8.0 mg L(-1) of Cr(VI) with an initial pH of 6.5 at room temperature. The Freundlich adsorption isotherm was applicable to describe the removal processes. Kinetics of the Cr(VI) removal was found to follow pseudo-second-order rate equation. Furthermore, the as-prepared and Cr(VI)-adsorbed FCSNs were carefully examined by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopic analysis (XPS). The characterization results suggested that the adsorbed Cr(VI) was partially reduced to Cr(lll) in Cr2O3/Cr(OH)3 on the FCSNs. The possible mechanism of removal of Cr(VI) on FCSNs was proposed, which involved the dominant Cr(VI) adsorption, followed by the partial reduction of Cr(VI) to Cr(III) (chromium(III) oxyhydroides) on the surface of FCSNs. These Fe@Fe2O3 core-shell nanowires with high specific surface area and strong magnetic property are very attractive for the removal of Cr(VI) from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental Science & Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.