Abstract
This study investigates the textile industries' dye Congo-red removal from aqueous solution using the calcined and uncalcined [Mg0.52+Zn0.252+Fe0.253+(OH)2].(CO32−)0.125.H2O ternary layered double hydroxide (LDH). XRD confirms the successful formation of the crystalline structure of LDH. FTIR analysis shows that the peak position at 1108 cm−1, which indicates the presence of S = O group. TEM analysis reveals the formation of a hexagonal shape morphology, whereas BET measurements demonstrate an improvement in surface area after calcination. This study analyzed dye adsorption, which is affected by interaction time, solution pH, and adsorbent dosage. The adsorption data is analyzed using the Langmuir isotherm and Freundlich isotherm, while the kinetics data is analyzed using pseudo-first-order, pseudo-second-order, and intraparticle diffusion models. The change in enthalpy (ΔH0) being positive and the change in Gibbs free energy (ΔG0) being negative designates that the adsorption process is endothermic and occurs spontaneously. The Langmuir isotherm model analyzed the adsorption isotherm data and calculated the amount of adsorbate adsorbed by adsorbent. The maximum amount of Congo-red adsorbed by calcined and uncalcined layered double hydroxide are 205.76 and 89.76 mg g-1. These results suggested that calcined layered double hydroxide is a significant adsorbent for removing effluents from wastewater.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.