Abstract
This study introduces a novel point selection procedure for the Probability Density Evolution Method (PDEM) to estimate time-dependent reliability and failure probabilities in dynamic systems under first-passage failure conditions. The method integrates and modifies features of the Subset simulation procedure to adaptively generate dependent sample sets suitable for a reliability analysis by a direct probability integration approach levering PDEM. Performance function assessments are used as weighting factors in the Subset supported Point Selection (S-PS), enhancing the ultimate failure probability estimation accuracy. The presented approach effectively identifies samples in the failure region, particularly benefiting for dynamic systems under stochastic excitation, tested with random dimensions up to 60. It also offers a computationally efficient structural reliability estimation procedure by analyzing full time–history responses. The proposed method provides deeper insights into rare failure events and mechanisms through the visualization of intermediate results. This research presents an advanced framework for estimating structural reliability and understanding critical events in dynamic systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.