Abstract

Wireless Sensor Network (WSN) is considered as the backbone of Internet of Things (IoT) networks. Authentication is the most important phase that guarantees secure access to such networks but it is more critical than that in traditional Internet because the communications are established between constrained devices that could not compute heavy cryptographic primitives. In this paper, we are studying with real experimentation the efficiency of HIP Diet EXchange header (HIP DEX) protocol over IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) in IoT. The adopted application layer protocol is Constrained Application Protocol (CoAP) and as a routing protocol, the Routing Protocol for Low power and lossy networks (RPL). The evaluation concerns the total End-to-End transmission delays during the authentication process between the communicating peers regarding the processing, propagation, and queuing times' overheads results. Most importantly, we propose an efficient handshake packets' compression header, and we detailed a comparison of the above evaluation's criteria before and after the proposed compression. Obtained results are very encouraging and reinforce the efficiency of HIP DEX in IoT networks during the handshake process of constrained nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call