Abstract

Catalytic reduction of SO2 to elemental sulfur was carried out over supported ruthenium catalysts that were derived not only from hexaruthenium carbonyl cluster complexes but also from RuCl3 as the precursor. The activity was largely dependent on the kind of metal oxide support used. Compared to the known systems, the TiO2-supported ruthenium catalysts operated with higher efficiency at lower temperature. Moreover, the selectivity was totally to elemental sulfur, forming no detectable amount of unfavorable H2S. H2S-free catalysis appeared to be a common feature of ruthenium catalysts regardless of the kind of precursors. The TiO2-supported catalyst derived from [N(PPh3)2]2[Ru6C(CO)16] was much more active within the 463–508 K temperature region than the catalyst conventionally prepared from RuCl3, while both showed similar activity at more elevated temperatures. The kind of cation in anionic cluster complexes and the presence of an interstitial atom are important factors in generating supported catalysts that operate under mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.