Abstract
Pseudomonas aeruginosa biofilm infections pose significant challenges in clinical settings due to their increased resistance to conventional antibiotics. Bacteriophages, viruses that infect and kill bacteria, have emerged as promising agents for combating biofilm-related infections. This study aimed to isolate and characterize a potent bacteriophage with antibiofilm activity against P. aeruginosa. Hospital sewage was utilized to isolate a bacteriophage targeting P. aeruginosa. Quantification of phages was conducted through spot tests and doublelayer agar methods. The stability of the isolated phage was assessed under varying pH and temperature conditions. Furthermore, the bacteriophage's ability to reduce bacterial growth and exhibit antibiofilm activity was evaluated at different Multiplicity of Infection (MOI) levels. The isolated bacteriophage, named MLG, was identified as a member of the Myoviridae family within the Caudovirales order. MLG effectively reduced bacterial growth over a 14-hour period. It displayed tolerance to a pH range of 5 to 9 and temperatures spanning 25 to 60°C. Moreover, MLG demonstrated efficient inhibition of biofilm formation across various MOI levels. Given its demonstrated in vitro capacity for bacterial growth reduction and antibiofilm activity, MLG holds potential for combatting P. aeruginosa biofilm infections. This study suggests a promising avenue for the development of alternative antibiofilm strategies using bacteriophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Lahore Garrison University Journal of Life Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.