Abstract

Co-pyrolysis technology containing biomass offers remarkable advantages in reducing NOx emissions economically and efficiently. In this work, it was innovatively introduced to solve the problem of excessive NOx emission during the incineration of waste energetic materials (EMs). The kinetics and NOx emission characteristics of waste double-base propellant (DP), pine sawdust (PS), and their mixtures with different ratios during pyrolysis were investigated by thermogravimetric analysis and fixed-bed experiments. The results showed that there was a significant interaction between DP and PS. Kinetic analysis by Friedman and Kissinger-Akahira-Sunose (KAS) methods demonstrated that the average activation energies of the mixtures with different ratios were smaller than that of DP, indicating that the addition of PS improved the reactivity of co-pyrolysis. In addition, the fixed-bed experiment determined that the lowest NOx emission was achieved during DP pyrolysis alone at 900 ℃. Co-pyrolysis at this temperature was found to have synergistic effects of reduced NOx emissions for different ratios of mixtures. The best synergistic effect was achieved at the mixing ratio of 60 wt% DP and 40 wt% PS, resulting in a 72.11 % reduction in actual NOx emissions compared to the expected value. This study provides a new direction and powerful data support for the clean, efficient and economic treatment of waste EMs, especially for practical engineering strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call