Abstract

The iron-air fuel cell (IAFC) has been successfully employed for the oxidative removal of many pollutants, but its feasibility for reductive immobilization of Cr(VI) is still unknown. Herein, we developed an IAFC system consisting of an iron anode and an activated carbon-PTFE based air-cathode, and evaluated its performance for Cr(VI) removal and power generation. In this reaction system, cathodic reduction and Fe(II) reduction both contributed to the reductive removal of Cr(VI). It was found that the decrease of solution pH from 6.0 to 3.0 promoted the removal of Cr(VI) due to the enhanced yield of Fe(II) ions and cathodic reduction, accompanying the increased power generation from 1040 mW m−2 to 2880 mW m−2. Besides, the Cr(VI) removal and power generation could be also promoted by elevating Na2SO4 concentration from 0.01 M to 0.1 M. In the IAFC process, Cr(VI) was initially reduced to less soluble ionic Cr(III) homogeneously and heterogeneously and then Cr(III) was immobilized by adsorption and/or co-precipitation with the fresh Fe(III) (oxy)hydroxides. Generally, this study is of great interest for the engineering community to design the environmentally benign and cost-effective strategy for the treatment of wastewater in remote areas, where the electricity is not easily available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call