Abstract

Spectral convertors are promising materials for solar cells as they engineered the band gap necessary for suppressing the losses. Existing spectral convertors have small stokes shift which exerts re-absorption losses due to the overlap of spectrum and limits light catching ability. Here we present large stoke shift chromium doped rhombohedral Al2O3: Cr3+ as a spectral convertor from UV–VIS to red region as single doped with maximum coverage of solar spectrum in UV region. The large stoke shifts in red region around 694 nm originate from 2Eg to 4A2g and broad absorption originates from $$^{{\text{4}}}{{\text{A}}_{{\text{2g}}}}{ \to ^{\text{4}}}{{\text{T}}_{{\text{1g}}}},{{\text{ }}^{\text{4}}}{{\text{A}}_{{\text{2g}}}}{ \to ^{\text{4}}}{{\text{T}}_{{\text{2g}}}}$$ . This broad absorption (300–600 nm) and large stokes shift emission at 694 nm suggest that the Cr3+ dopant rhombohedral Al2O3 is well suited as spectral convertors for enhancing the efficiency of the solar cell through better matching of spectral response with spectral distribution of light striking on the solar cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call