Abstract

Recycling solar panels is crucial to mitigating the environmental impact of the growing volume of end-of-life photovoltaic waste and to conserve valuable resources, while achieving high purity in recovered materials ensures their effective reuse in the manufacturing of new solar panels, contributing to a sustainable and circular economy. This study proposes a two-step leaching process to recover Ag and Al from the silicon fraction of EoL photovoltaics (PVs). In the first-stage laboratory scale tests, 99% Al was extracted using 5% HCl at room temperature (19 °C) for 3 h The Al was precipitated as oxide from the solution. The silicon residue was then leached with 0.5 M HNO3 at 85 °C for 2 h, extracting 99% Ag and producing Si with 99.83% purity. The silver was precipitated to produce metallic Ag with >99.9% purity. Then, 95.63% of Pb in the nitric acid effluent was removed using ion exchange resins. Further, methods to mitigate the effluent solutions were recommended and the entire process was presented in a flowsheet.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.