Abstract

Selective phosphorus removal from aquatic media has become an ideal strategy to mitigate eutrophication and meet increasingly stringent discharge requirements. To achieve phosphorus control and resource utilization of low-calorific-value lignite, iron and magnesium salts were used to functionalize lignite, and iron-magnesium functionalized lignite (called IM@BC) was prepared for phosphate recovery from water media. The adsorption properties of IM@BC were systematically evaluated, especially the influence of ambient pH and co-existing ions. The kinetic, isothermal, and thermodynamic adsorption behaviors of IM@BC were analyzed. The adsorption mechanism was revealed by microscopic characterization. The potential application of phosphate-containing IM@BC (P-IM@BC) was explored. The results show that IM@BC has a strong phosphate adsorption capacity, and the maximum adsorption capacity is 226.22 mgP/g at pH = 3. Co-existing CO32- inhibits phosphate adsorption, while coexisting Ca2+ and Mg2+ enhance the effect. At the initial adsorption stage, the amount of phosphate adsorbed by IM@BC continues to increase, and the adsorption equilibrium state is gradually reached after 24 h. The adsorption process conforms to the pseudo-second-order kinetic model (PSO) and Langmuir isothermal adsorption model, and the adsorption process is mainly chemical adsorption. The phosphate absorption capacity is positively correlated with temperature (283.15 K~313.15 K), and the adsorption process is spontaneous, endothermic, and entropy-increasing. Its adsorption mechanism includes electrostatic attraction, ion exchange, surface precipitation, and coordination exchange. IM@BC can efficiently recover phosphate from actual phosphorus-containing wastewater with a recovery efficiency of up to 90%. P-IM@BC slowly releases phosphate from pH 3 to 11. Plant growth experiments showed that P-IM@BC could be used as a slow-release fertilizer to promote the root growth of cowpeas. The novelty of this work lies in the development of a highly efficient phosphate recovery adsorbent, which provides a feasible method of phosphorus control in water media and resource utilization of lignite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.