Abstract

Neodymium (Nd) is critical component of sintered neodymium magnets. Separation of Nd from consumer magnets has attracted a widespread attention. In this paper, we presented free-standing ionic imprinted mesoporous film materials for facile and highly efficient targeted separation of Nd from permanent magnets by dual-template docking oriented ionic imprinting (DTD-OII) method. DTD-OII is based on dual-template docking oriented molecular imprinting. Compared with conventional imprinting, this novel strategy does not need extra steps, but significantly advance imprinted efficiency. With optimization of functional monomer, our free-standing dual-template docking oriented ionic imprinted mesoporous films exhibit excellent adsorption of Nd by solid-liquid extraction. The Nd adsorption capacity for optimized films was 34.98 mg g-1 under pH = 3.0. The distribution coefficient of Nd was 636 mL g-1, which indicates films possess significantly selectivity of Nd. In addition, efficient dual-template docking oriented ionic imprinting makes films demonstrating an outstanding of reusability by cycle test, which appreciating their potential for industrial application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call