Abstract
Electrochemical pseudocapacitors, along with batteries, are the essential components of today’s highly efficient energy storage systems. Cobalt oxide is widely developing for hybrid supercapacitor pseudocapacitance electrode applications due to its wide range of redox reactions, high theoretical capacitance, low cost, and presence of electrical conductivity. In this work, a recovery annealing approach is proposed to modify the electrochemical properties of Co3O4 pseudocapacitive electrodes. Cyclic voltammetry measurements indicate a predominance of surface-controlled redox reactions as a result of recovery annealing. X-ray diffraction, Raman spectra, and XPES results showed that due to the small size of cobalt oxide particles, low-temperature recovery causes the transformation of the Co3O4 nanocrystalline phase into the CoO phase. For the same reason, a rapid reverse transformation of CoO into Co3O4 occurs during in situ oxidation. This recrystallization enhances the electrochemical activity of the surface of nanoparticles, where a high concentration of oxygen vacancies is observed in the resulting Co3O4 phase. Thus, a simple method of modifying nanocrystalline Co3O4 electrodes provides much-improved pseudocapacitance characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.