Abstract

We introduce and solve some new problems of efficient reconstruction of an unknown sequence from its versions distorted by errors of a certain type. These erroneous versions are considered as outputs of repeated transmissions over a channel, either a combinatorial channel defined by the maximum number of permissible errors of a given type, or a discrete memoryless channel. We are interested in the smallest N such that N erroneous versions always suffice to reconstruct a sequence of length n, either exactly or with a preset accuracy and/or with a given probability. We are also interested in simple reconstruction algorithms. Complete solutions for combinatorial channels with some types of errors of interest in coding theory, namely, substitutions, transpositions, deletions, and insertions of symbols are given. For these cases, simple reconstruction algorithms based on majority and threshold principles and their nontrivial combination are found. In general, for combinatorial channels the considered problem is reduced to a new problem of reconstructing a vertex of an arbitrary graph with the help of the minimum number of vertices in its metrical ball of a given radius. A certain sufficient condition for solution of this problem is presented. For a discrete memoryless channel, the asymptotic behavior of the minimum number of repeated transmissions which are sufficient to reconstruct any sequence of length n within Hamming distance d with error probability /spl epsiv/ is found when d/n and /spl epsiv/ tend to 0 as n/spl rarr//spl infin/. A similar result for the continuous channel with discrete time and additive Gaussian noise is also obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.