Abstract

Reallocating resources to get mutually beneficial outcomes is a fundamental problem in various multi-agent settings. While finding an arbitrary Pareto optimal allocation is generally easy, checking whether a particular allocation is Pareto optimal can be much more difficult. This problem is equivalent to checking that the allocated objects cannot be reallocated in such a way that at least one agent prefers her new allocation to her old one, and no agent prefers her old allocation to her new one. We consider the problem for two related types of preference relations over sets of objects. In the first part of the paper we focus on the setting in which agents express additive cardinal utilities over objects. We present computational hardness results as well as polynomial-time algorithms for testing Pareto optimality under different restrictions such as two utility values or lexicographic utilities. In the second part of the paper we assume that agents express only their (ordinal) preferences over individual objects, and that their underlying preferences are additively separable. In this setting, we present characterizations and polynomial-time algorithms for possible and necessary Pareto optimality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.