Abstract

Labeling of biomolecules with organometallic moieties holds great promise as a tool for chemical biology and for the investigation of biochemical signaling pathways. Herein, we report a robust and reproducible synthetic strategy for the synthesis of ruthenocenecarboxylic acid, giving the acid in 53% overall yield. This organometallic label was conjugated via solid-phase peptide synthesis in near-quantitative yield to a number of different biologically active peptides, using only 1 equiv of the acid and coupling reagents, thereby avoiding wasting the precious organometallic acid. This optimized method of stoichiometric N-terminal acylation was then also successfully applied to conjugating ferrocenecarboxylic acid and a novel organometallic ReI(CO)3 complex, showing the generality of the synthetic procedure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.