Abstract

Volatile methyl siloxanes (VMSs), which are converted to silica sediments during biogas burning, are regarded as the most problematic VMSs in existing biogas cleaning systems. However, the majority of methods for VMS removal, including cryogenic condensation, physical absorption, chemical absorption and porous material adsorption have been constrained by these methods' intrinsic drawbacks. Here, we present an alternate method for removing VMS from gas streams that are based on the materials supported by H2SO4. Simple incipient wetness impregnation was used to create MCM-41-supported H2SO4 (SSA/MCM) materials, which showed high reactive adsorption property for hexamethyldisiloxane (L2) elimination in the temperature range of 80–160 °C with the peak reactivity at 100 °C. With maximum QB and Qm values of 191.3 and 365.6 mg g−1, respectively, dynamic adsorption findings showed the significance of altering the intake concentration, gas flow rate, adsorbent mass, relative humidity, as well as H2SO4 loading in determining the L2 removal efficacy. Furthermore, it was established that the L2 reactive adsorption was caused by the polymerization of L2 by supported H2SO4, which produced the creation of polysiloxane. The findings offer an important foundation for creating a cutting-edge biogas cleaning method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call