Abstract
An algorithm for accurate three‐dimensional ray tracing is presented for realistic, nonspherical ionospheric electron density distributions, ignoring effects of the magnetic field. At the start of each ray path increment a truncated Taylor series expansion of the electron density results in a computationally efficient, closed‐form solution of the Euler‐Lagrange equations for the increment. The technique is applied to computations of ray paths in a nonspherical ionosphere which is specified by a climatological model used for HF over‐the‐horizon (OTH) radar studies. The effects of tilts in a sunrise transition region on signal losses and ray path deviations are found to be substantial. Results of various ionospheric approximations used for single‐site transmitter location are calculated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.