Abstract
We present an algorithm for efficiently computing ray intersections with multi-resolution global terrain partitioned by spheroidal height-augmented quadtrees. While previous methods support terrain defined on a Cartesian coordinate system, our methods support terrain defined on a two-parameter ellipsoidal coordinate system. This curvilinear system is necessary for an accurate model of global terrain. Supporting multi-resolution terrain and quadtrees on this curvilinear coordinate system raises a surprising number of complications. We describe the complexities and present solutions. The final algorithm is suited for interactive terrain selection, collision detection and simple LOS (line-of-site) queries on global terrain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.