Abstract
Abstract In this paper we present an automatic algorithm to detect basic shapes in unorganized point clouds. The algorithm decomposes the point cloud into a concise, hybrid structure of inherent shapes and a set of remaining points. Each detected shape serves as a proxy for a set of corresponding points. Our method is based on random sampling and detects planes, spheres, cylinders, cones and tori. For models with surfaces composed of these basic shapes only, for example, CAD models, we automatically obtain a representation solely consisting of shape proxies. We demonstrate that the algorithm is robust even in the presence of many outliers and a high degree of noise. The proposed method scales well with respect to the size of the input point cloud and the number and size of the shapes within the data. Even point sets with several millions of samples are robustly decomposed within less than a minute. Moreover, the algorithm is conceptually simple and easy to implement. Application areas include measurement of physical parameters, scan registration, surface compression, hybrid rendering, shape classification, meshing, simplification, approximation and reverse engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.