Abstract

Biomedical color (BMC) images are being used on a wide scale by physicians, where their diagnosis would be more accurate. Hence, it is recommended to develop new approaches that are able to represent and retrieve the BMC images efficiently. This work proposes two methods to represent BMC images: Quaternion Associated Laguerre. Moments (Q_ALMs), and Quaternion Chebyshev Moments (Q_CMs). Q_ALMs and Q_CMs are derived by extending the ALMs and CMs to the quaternion field. ALMs and CMs represent discrete orthogonal moments, and they are defined using the Associated Laguerre Polynomials (ALPs) and Chebychev Polynomials, respectively. Hospitals and medical institutes everywhere in the world create and store a large variety of datasets of BMC images during the routine clinical practices; hence, the mastery to retrieve the BMC images correctly is crucial for precise diagnoses and also for the researchers in medical sciences. So that in this study, we also introduced two image retrieval systems for BMC images based on the Q_CMs and Q_ALMs approaches. Our approaches extensively assessed with two standard benchmark datasets: LGG Segmentation dataset for brain magnetic resonance MR images and NEMA-CT for the computed tomography (CT) images. The performance of the proposed retrieval systems is assessed through three performance metrics: Average retrieval precision (ARP), average retrieval rate (ARR), and F_score. Results have shown the outperformance of Q_CMs over Q_ALMs in both the cases of representing and retrieval of BMC images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.