Abstract

AbstractTwo compatible donors (PBDB‐T and PTB7‐Th) and two miscible acceptors (ITIC and FOIC) are employed to deliver a parallel‐alloy morphology model in non‐fullerene‐based quaternary organic solar cells. PBDB‐T and PTB7‐Th form a parallel link with a slight adjustment of molecular packing into enhanced face‐on crystallites while ITIC disperses into discontinuous FOIC microcrystal regions to form continuous and ordered alloy‐like acceptor phases. Characterization of blend morphology highlights the parallel‐alloy model—enabled by the introduction of PBDB‐T and ITIC, which contributes to improved molecular packing and reduced domain size resulting in efficient charge generation and consistent transport channels. This successful parallel‐alloy quaternary blend morphology demonstrates an enhanced optical absorption, optimized domain size, and nanostructures toward simultaneous improvement in charge transfer and transport. Therefore, a power conversion efficiency of 12.52% is realized for a quaternary device which is 6% higher than the ternary device (PBDB‐T:PTB7‐Th:FOIC) and 12% higher than the binary device (PTB7‐Th:FOIC). Domination of quaternary devices over ternary and binary blends, which is another feasible way to realize highly efficient devices through further investigation of quaternary OSCs, is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call