Abstract

The calculation of acid dissociation constants (pKa) is an important task in computational chemistry and chemoinformatics. Theoretically and with minimal empiricism, this is possible from computed acid dissociation free energies via so-called linear free-energy relationships. In this study some modifications are introduced to the latter, providing a straightforward, broadly applicable protocol with an adjustable degree of sophistication for quantum chemistry-based calculations of pKa in water. It targets a wide pKa range (∼70 units) and medium-sized, flexible molecules. Herein, a focus is set on the recently published r2SCAN-3c and related efficient composite density functionals and the semiempirical GFN2-xTB method, including a newly introduced energy correction for heterolytic dissociation, both in combination with implicit solvation models. The performance is evaluated in comparison with experimental data, showing mean errors often smaller than a targeted 1 pKa unit accuracy. Larger deviations are observed only upon inclusion of challenging highly negative (<-5) or positive (>15) pKa values. Among all those tested, it is found that B97-3c is the best performing functional, although rather independently of the density functional theory (DFT) method used; low root-mean-square errors of 0.8-1.0 pKa units for typical drugs are obtained. For optimal performance, it is recommended to employ DFT functional specific free-energy relationship parameters. Additionally, a significant conformational dependence of the pKa values is revealed and quantified for some nonrigid drug molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.