Abstract

The study of open quantum systems, quantum thermodynamics and quantum many-body spin physics in realistic solid-state platforms, has been a long-standing goal in quantum and condensed-matter physics. In this talk I will address these topics through the platform of nitrogen-vacancy (NV) spins in diamond, in the context of purification (or cooling) of a spin bath as a quantum resource and for enhanced metrology. I will first describe a general theoretical framework we developed for Hamiltonian engineering in an interacting spin system [1]. I will then extend this framework to coupling of the spin ensemble to a spin bath, including both coherent and dissipative dynamics [2]. Using these tools I will present a scheme for efficient purification of the spin bath, surpassing the current state-of-the-art and providing a path toward applications in quantum technologies, such as enhanced MRI sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.