Abstract
Nitrate (NO3-) is a widespread contaminant that threatens human health and ecological safety. Meanwhile, the disinfection byproducts chlorate (ClO3-) is generated inevitably in conventional wastewater treatment. Therefore, the contaminants mixture of NO3- and ClO3- are universal in common emission units. Photocatalysis technology is a feasible approach for the synergistic abatement of contaminant mixture, where matching suitable oxidation reactions is a potential strategy to improve the photocatalytic reduction reactions. Herein, formate (HCOOH) oxidation is introduced to facilitate the photocatalytic reduction of the NO3- and ClO3- mixture. As a result, high purification efficiency of NO3- and ClO3- mixture are achieved, evidenced by 84.6% e--dependent removal of the mixture at a reaction time of 30 min, with 94.5% N2 selectivity and 100% Cl- selectivity, respectively. Specifically, by the close combination of in-situ characterizations and theoretical calculations, the detailed reaction mechanism is revealed, in which the intermediate coupling-decoupling route from NO3- reduction and HCOOH oxidation is established by the chlorate-induced photoredox activation, leading to the significantly enhanced efficiency for the wastewater mixture purification. The practical application of this pathway is established for simulated wastewater to show its wide applicability. This work provides new insights into photoredox catalysis technology for its environmental application.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.