Abstract
In diploid organisms, selfing reduces the efficiency of selection in removing deleterious mutations from a population. This need not be the case for all organisms. Some plants, for example, undergo an extreme form of selfing known as intragametophytic selfing, which immediately exposes all recessive deleterious mutations in a parental genome to selective purging. Here, we ask how effectively deleterious mutations are removed from such plants. Specifically, we study the extent to which deleterious mutations accumulate in a predominantly selfing and a predominantly outcrossing pair of moss species, using genome-wide transcriptome data. We find that the selfing species purge significantly more nonsynonymous mutations, as well as a greater proportion of radical amino acid changes which alter physicochemical properties of amino acids. Moreover, their purging of deleterious mutation is especially strong in conserved regions of protein-coding genes. Our observations show that selfing need not impede but can even accelerate the removal of deleterious mutations, and do so on a genome-wide scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.